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ABSTRACT

Society has come to rely on algorithms like classifiers for
important decision making, giving rise to the need for ethical
guarantees such as fairness. Fairness is typically defined by
asking that some statistic of a classifier be approximately
equal over protected groups within a population. In this pa-
per, current approaches to fairness are discussed and used
to motivate algorithmic proposals that incorporate fairness
into genetic programming for classification. We propose two
ideas. The first is to incorporate a fairness objective into
multi-objective optimization. The second is to adapt lexi-
case selection to define cases dynamically over intersections
of protected groups. We describe why lexicase selection is
well suited to pressure models to perform well across the
potentially infinitely many subgroups over which fairness is
desired. We use a recent genetic programming approach to
construct models on four datasets for which fairness con-
straints are necessary, and empirically compare performance
to prior methods utilizing game-theoretic solutions. Methods
are assessed based on their ability to generate trade-offs of
subgroup fairness and accuracy that are Pareto optimal. The
result show that genetic programming methods in general,
and random search in particular, are well suited to this task.
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1 INTRODUCTION

Machine learning (ML) models that are deployed in the real
world can have serious effects on peoples’ lives. In impactful
domains such as lending [11], college admissions [24], criminal
sentencing [3, 6], and healthcare [10, 29], there is increasing
concern that models will behave in unethical ways [16]. This
concern has led ML researchers to propose different measures
of fairness for constraining and/or auditing classification
models [8]. However, in many cases, desired notions of fairness
require exponentially many constraints to be satisfied, making
the problems of learning fair models, and also checking for
fairness, computationally hard [14]. For this reason search
heuristics like genetic programming (GP) may be useful for
finding approximate solutions to these problems.

This paper is, to our knowledge, the first foray into incorpo-
rating fairness constraints into GP. We propose and study two
methods for learning fair classifiers via GP-based symbolic
classification. Our first proposal is a straightforward one: to
add a fairness metric as an objective to multi-objective opti-
mization [7]. This fairness metric works by defining protected
groups within the data, which match individuals having a
specific value of one protected attribute, e.g. “female” for a
sex attribute. Unfortunately, simple metrics of fairness do
not capture fairness over rich subgroups and/or intersections
of groups - that is, over multiple protected attributes that
intersect in myriad ways. With this in mind, we propose an
adaptation of lexicase selection [18] designed to operate over
randomized sequences of fairness constraints. This algorithm
draws a connection between these numerous fairness con-
straints and the way in which lexicase samples fitness cases
in random sequences for parent selection. We illustrate the
ability of lexicase to sample the space of group intersections in
order to pressure models to perform well on the intersections
of groups that are most difficult in the current population.
In our experiments, we compare several randomized search
heuristics to a recent game-theoretic approach to capturing
subgroup fairness. The results suggest that GP methods can
produce Pareto-efficient trade-offs between fairness and ac-
curacy, and that random search is a strong benchmark for
doing so.

In the following section, we describe how fairness has been
approached in the ML community and the challenges that
motivate our study. Section 3 describes the algorithms we pro-
pose in detail, and Section 4 describes the experiment we con-
duct on four real-world datasets for which fairness concerns
are pertinent. We present resulting measures of performance,
statistical comparisons, and example fairness-accuracy trade-
offs in Section 5, followed finally by a discussion of what these
results entail for future studies.
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2 BACKGROUND

Incorporating notions of fairness into ML is a fairly new
idea [25], and early work in the field is reviewed in Choulde-
chova and Roth [5]. Algorithmic unfairness may arise from
disparate causes, but often has to do with the properties of
the data used to train a model. One major cause of bias is
that data are often collected from unequal demographics of
a population. In such a scenario, algorithms that minimize
average error over all samples will skew towards fitting the
majority population, since this leads to lower average error.
One way to address this problem is to train separate models
for separate demographic populations. In some scenarios, this
method can reduce bias, but there are two main caveats, ex-
pounded upon in [28]. First, some application areas explicitly
forbid demographic data to be used in prediction, mean-
ing these models could not be deployed. The second, and
more general, concern is that we may want to protect several
sensitive features of a population (e.g., race, ethnicity, sex,
income, medical history, etc.). In those cases, dividing data
beforehand is non-trivial, and can severely limit the sample
size used to train each model, leading to poor performance.

There is not a single agreed-upon definition of fairness for
classification. The definitions put forth can be grouped into
two kinds: statistical fairness, in which we ask a classifier to
behave approximately equally on average across protected
groups according to some metric; and individual fairness,
in which we ask a classifier to perform similarly on similar
pairs of individuals [8]. For this paper, we focus on statistical
fairness, especially equality of false positive (FP), false nega-
tive (FN), and accuracy rates among groups. We essentially
ask that the classifier’s errors be distributed among different
protected groups as evenly as possible.

Fairness constraints have been proposed for classification
algorithms, for example by regularization [2, 8], model cali-
bration [11], cost-sensitive classification [1], and evolutionary
multi-objective optimization [26]. For the most part, litera-
ture has focused on providing guarantees over a small number
of protected groups that represent single attributes - for ex-
ample, race and sex. However, a model that appears fair
with respect to several individual groups may actually dis-
criminate over specific intersections or conjunctions of those
groups. Kearns et al. [14] refers to this issue as “fairness ger-
rymandering”. To paraphrase Example 1.1 of their work [14],
imagine a classifier that exhibits equivalent error rates ac-
cording to two protected groups: a race feature taking values
in {“black”, “white”} and, separately, a sex feature taking
values in {“male”, “female”}. This seemingly fair classifier
could actually be producing 100% of its errors on black males
and white females. In such a case the classifier would appear
fair according to the individual race and sex groups, but
unfair with respect to their conjunction.

If we instead wish to learn a classifier that is fair with re-
spect to both individual groups defined over single attributes
and boolean conjunctions of those groups, a combinatorial
problem arises. For 𝑝 protected attributes, we have to both
learn and check for fairness over 2𝑝 groups. It turns out that

the problems of auditing a classifier for fairness over boolean
conjunctions of groups (as well as other group definitions) is
computationally hard in the worst case, as is the classification
problem [14].

Kearns et al. [14] proposed a heuristic solution to the
problem of learning a classifier with rich subgroup fairness
constraints by formulating it as a two-player game in which
one player learns a classifier and the other learns to audit that
classifier for fairness. They empirically illustrated the trade-
off between fairness violations and model accuracy on four
real-world problems [15]. In our study, we build upon their
work by using their fairness auditor to compare performance
of models on the same datasets. In their study, Kearns et al.
focused on algorithmic characterization by reporting fairness
and accuracy on the training samples. Conversely, we are
interested in the generalization performance of the learned
classification models; therefore we conduct our comparisons
over cross-validated predictions, rather than reporting in-
sample.

Our interest in applying GP to the problem of fair classi-
fication is motivated by three observations from this prior
work. First, given that the learning and auditing problems
for rich subgroup fairness are hard in the worst case means
that a heuristic method such as GP may be able to pro-
vide approximate solutions with high utility, and therefore it
is worth an empirical analysis. Second, many authors note
the inherent trade-off that exists between fairness and accu-
racy [11, 15] and the need for Pareto-efficient solution sets.
Multi-objective optimization methods that are typically used
in GP (e.g., NSGA2 [7]) are well-suited to handle competing
objectives during search. Finally, we note that demographic
imbalance, one of the causes of model unfairness, is a prob-
lem due to the use of average error for guiding optimization.
However, recent semantic selection methods [23] such as 𝜖-
lexicase selection [22] are designed specifically to move away
from scalar fitness values that average error over the entire
training set. The original motivation behind these GP meth-
ods is to prevent the loss of candidate models in the search
space that perform well over difficult subsets of the data [22].
Furthermore, we hypothesize that 𝜖-lexicase selection may be
adapted to preserve models that perform well over structured
subgroups of the protected attributes as well.

3 METHODS

We start with a dataset of triples, 𝒟 = {(x𝑖,x
′
𝑖, 𝑦𝑖)}𝑚𝑖=1,

containing 𝑚 examples. Our labels 𝑦 ∈ {0, 1} are binary
classification assignments and x is a vector of 𝑑 features. In
addition to x, we have a vector of 𝑝 sensitive features, x′, that
we wish to protect via some fairness constraint. It is worth
mentioning that for the purposes of this study, x contains x′,
meaning that the learned classifier has access to the sensitive
attribute observations in prediction; this is not always the
case (e.g. [28]).

We also define protected groups 𝒢, where each 𝑔 ∈ 𝒢 is
an indicator function1, mapping a set of sensitive features

1We use 1{} to denote indicator functions.
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x′ to a group membership. It is useful to define a simple
set of protected groups that correspond to the unique levels
of each feature in x′. We will call the set of these simple
groups 𝒢0. As an example, imagine we have two sensitive
features corresponding to race and sex: 𝑥′

1 ∈ {black, white}
and 𝑥′

2 ∈ {male, female}. Then 𝒢0 would consist of four
groups:

𝒢0 ={g1(x′) = 1{𝑥′
1 = black},

g2(x
′) = 1{𝑥′

1 = white},
g3(x

′) = 1{𝑥′
2 = male},

g4(x
′) = 1{𝑥′

2 = female}}
We make use of 𝒢0 in defining marginal fairness and in
Algorithm 1.

We use a recent GP technique called FEAT [19, 21] that
evolves feature sets for a linear model, in this case a logistic
regression model. More details of this method are given in
Section 4. As in other GP methods, FEAT trains a popula-
tion of individuals, 𝑛 ∈ 𝒩 , each of which produces binary
classifications of the form 𝑛(x) ∈ {0, 1}. The fitness of 𝑛
is its average loss over the training samples, denoted 𝑓(𝑛).
We refer to the fitness of 𝑛 over a specific group of training
samples as 𝑓(𝑛, 𝑔). With these definitions in mind, we can
define the fairness of a classifier with respect to a particular
group and fitness measure as:

𝑓 -Fairness(𝑛, 𝑔) = |𝑓(𝑛)− 𝑓(𝑛, 𝑔)| (1)

FEAT uses logistic loss as its fitness during training, in
keeping with its logistic regression pairing. However, we com-
pare fairness on fitted models relative to the FP and FN rate,
as in previous work [1, 15].

3.1 Multi-objective Approach

A straightforward way to incorporate fairness into FEAT is
to add it as an objective to a multi-objective optimization
algorithm like NSGA2. We use the term marginal fairness to
refer to the first-level fairness of a model defined over simple
groups 𝒢0:

𝑓 -Marginal Fairness(𝑛,𝒢0) =
1

|𝒢0|
∑︁
𝑔∈𝒢0

𝑓 -Fairness(n,g) (2)

A challenge with using fairness as an objective is the
presence of a trivial solution: a model that produces all 1 or
all 0 classifications has perfect fairness, and will easily remain
in the population unless explicitly removed.

A major shortcoming of optimizing Eqn. 2 is that it does
not pressure classifiers to perform well over group intersec-
tions, and is therefore susceptible to fairness gerrymandering,
as described in Section 2. Unfortunately, it is not feasible to
explicitly audit each classifier in the population each genera-
tion over all possible combinations of structured subgroups.
While an approximate, polynomial time solution has been
proposed [14, 15], we consider it too expensive to compute in
practice each iteration on the entire set of models. For these
reasons, we propose an adaptation of lexicase selection [27]
to handle this task in the following section.

3.2 Fair Lexicase Selection

Lexicase selection is a parent selection algorithm originally
proposed for program synthesis tasks [13] and later regres-
sion [22]. Each parent selection event, lexicase selections
filters the population through a newly randomized ordering
of “cases”, which are typically training samples. An individ-
ual may only pass through one of these cases if it has the best
fitness in the current pool of individuals, or alternately if it
is within 𝜖 of the best for 𝜖-lexicase selection. The filtering
process stops when one individual is left (and is selected), or
when it runs out of cases, resulting in random selection from
the remaining pool.

Although different methods for defining 𝜖 have been pro-
posed, we use the most common one, which defines 𝜖 as the
median absolute deviation (𝜆) of the loss (ℓ) in the current
selection pool: 2

𝜆(ℓ(𝑛), 𝑛 ∈ 𝒮) = median(|ℓ(𝑛)−median(ℓ(𝑛))|), 𝑛 ∈ 𝒮

Lexicase selection has a few properties worth noting that
are discussed in depth in [18]. First, it takes into account
case “hardness”, meaning training samples that are very easy
to solve apply very little selective pressure to the population,
and vice versa. Second, lexicase selection selects individuals
on the Pareto front spanned by the cases; this means that, in
general, it is able to preserve individuals that only perform
well on a small number of hard cases (i.e. specialists [12]).
Third, and perhaps most relevant to rich subgroup fairness,
lexicase selection does not require each individual to be run
on each case/sample, since selection often chooses a parent
before the cases have been exhausted [22]. The worst case
complexity of parent selection is 𝑂(|𝒩 |2𝑚), which only occurs
in a semantically homogeneous population.

Because of the third point above, we can ask for lexicase
selection to audit classifiers over conjunctions of groups with-
out explicitly constructing those groups beforehand. Instead,
in fair lexicase (FLEX, detailed in Alg. 1), we define “cases”
to be drawn from the simple groups in 𝒢0. A randomized
ordering of these groups, i.e. cases, thereby assesses classifier
performance over a conjunction of protected attributes. By
defining cases in this way, selective pressure moves dynami-
cally towards subgroups that are difficult to solve. For any
given parent selection event, lexicase only needs to sample
as many groups as are necessary to winnow the pool to one
candidate, which is at most |𝒢0|. Nonetheless, due to the
conditional nature of case orderings, and the variability in
case depth and orderings, lexicase effectively samples |𝒢0|!
combinations of protected groups.

An illustration of three example selection events is shown
in Figure 1. These events illustrate that FLEX can select on
different sequences of groups and different sequence lengths,
while also taking into account the easiness or hardness of the
group among the current selection pool.

2Defining 𝜆 relative to the current selection pool is called “dynamic
𝜖-lexicase selection” in [18].
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Figure 1: Three example selection events with FLEX,
with a population 𝒩 = {𝑛1, . . . , 𝑛5} and protected
groups 𝒢 = {𝑔1, . . . , 𝑔4}. Parent selection 1) selects
on the conjunction of 𝑔1, 𝑔3, and 𝑔2 to select 𝑛4. Note
that 𝑔3 exerts no selection pressure because 𝑛4 and
𝑛5 both perform well on it. 2) Here a single group, 𝑔3,
is enough to winnow the population to 𝑛3, which is
selected. 3) Selection on 𝑔4 and 𝑔3 to select 𝑛1. Gray
cases are paths that have already been visited for a
given selection event.

A downside of FLEX versus the multi-objective approach
is that it is not as clear how to pressure for both fairness and
accuracy among cases. On one hand, selecting for accuracy
uniformly over many group definitions could lead to fairness,
but it may also preserve markedly unfair, and therefore un-
desirable, models. We address this issue by allowing both
case definitions to appear with equal probability. This choice
explains the random coin flip in Alg. 1.

4 EXPERIMENTS

We conduct our experiment on four datasets used in previous
related work [15]. These datasets and their properties are
detailed in Table 1. Each of these classification problems
contain sensitive information for which one would reasonably
want to assure fairness. Two of the datasets concern models
for admissions decisions (Lawschool and Student); The other
two are of concern for lending and credit assessment: one
predicts rates of community crime (Communities), and the
other attempts to predict income level (Adult). For each of
these datasets we used the same cleaning procedure as this
previous work, making use of their repository (available here:
github.com/algowatchpenn/GerryFair).

We compared eight different modeling approaches in our
study, the parameters of which are shown in Table 2. Here
we briefly describe the two main algorithms that are used.

GerryFair. First, we used the “Fictitious Play” algorithm
from [14, 15], trained for 100 iterations at 100 different levels
of 𝛾, which controls the trade-off between error and fair-
ness. As mentioned earlier, GerryFair treats the problem of
learning a fair classifier as a two player game in which one

Algorithm 1 : Fair 𝜖-Lexicase Selection (FLEX) ap-
plied to individuals 𝑛 ∈ 𝒩 with loss 𝑓(𝑛, 𝑔) over protected
groups 𝑔 ∈ 𝒢0.

Selection(𝒩 ,𝒢0) :

𝒫 ← ∅ ♢ parents
do N times:

𝒫 ← 𝒫 ∪ GetParent(𝒩 ,𝒢0) ♢ add selection

to 𝒫

GetParent(𝒩 ,𝒢0) :

𝒢′ ← 𝒢0 ♢ protected
groups

𝑆 ← 𝒩 ♢ selection pool

while |𝒢′| > 0 and |𝒮| > 1:
𝑔 ← random choice from 𝒢′ ♢ pick random

group
if random number ∈ [0, 1] < 0.5 then

ℓ(𝑛) ← 𝑓(𝑛, 𝑔) for 𝑛 ∈ 𝒮 ♢ loss over group

else
ℓ(𝑛) ← 𝑓 -Fairness(𝑛, 𝑔) for 𝑛 ∈ 𝒮 ♢ group fairness

ℓ* ← min ℓ(𝑛) for 𝑛 ∈ 𝒮 ♢ min fitness in
pool

𝜖← 𝜆(ℓ(𝑛), 𝑛 ∈ 𝒮) ♢ deviation of
fitnesses

for 𝑛 ∈ 𝒮:
if ℓ(𝑛) > ℓ* + 𝜖 then

𝒮 ← 𝒮 ∖ {𝑛} ♢ filter selection

pool
𝒢′ ← 𝒢′ ∖ {𝑔} ♢ remove 𝑔

return random choice from 𝒮

player, the classifier, is attempting to minimize error over
weighted training samples, and the other player, the auditor,
is attempting to find the subgroup within the classifier’s
predictions that produces largest fairness violation. The play
continues for the maximum iterations or until the maximum
fairness violation is less than 𝛾. The final learned classifier
is an ensemble of linear, cost-sensitive classification models.
We make use of the auditor for validating the predictions
of all compared models, so it is described in more detail in
Section 4.1.

FEAT. Our GP experiments are carried out using the
Feature Engineering Automation Tool (FEAT), a GP method
in which each individual model 𝑛 consists of a set of programs
(i.e. engineered features) that are fed into a logistic regression
model (see Figure 2). This allows FEAT to learn a feature
space for a logistic regression model, where the number of
features is learned via the search process. The features are
comprised of continuous and boolean functions, including
common neural network activation functions, as shown in
Table 1 in [21]. We choose to use FEAT for this experiment
because it performed well in comparison to other state-of-
the-art GP methods on a battery of regression tests [19].
FEAT is also advantageous in this application to binary
classification because it can be paired with logistic regression,
which provides probabilistic outputs for classification. These
probabilities are necessary for assessing model performance
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Table 1: Properties of the datasets used for comparison.

Dataset Source (link) Outcome Samples Features Sensitive features Protection Types Number of simple
groups (|𝒢0|)

Communities UCI Crime rates 1994 122 18 race, ethnicity, nation-
ality

1563

Adult Census Income 2020 98 7 age, race, sex 78
Lawschool ERIC Bar passage 1823 17 4 race, income, age, gen-

der
47

Student Secondary Schools Achievement 395 43 5 sex, age, relationship
status, alcohol con-
sumption

22

using certain measures such as the average precision score,
as we will describe later in Eqn. 5.

FEAT trains models according to a common evolution-
ary strategy. This strategy begins with the construction of
models, followed by selection for parents. The parents are
used to produced offspring via mutation and crossover. De-
pending on the method used, parents and offspring may then
compete in a survival step (as in NSGA2), or the offspring
may replace the parents (LEX, FLEX). For further details of
FEAT we refer the reader to [20] and to the github project
(github.com/lacava/feat).

We test six different selection/survival methods for FEAT,
shown in Table 2. FLEX-NSGA2 is a hybrid of FLEX and
NSGA2 in which selection for parents is conducted using
FLEX and survival is conducted using the survival step of
NSGA2. Each GP method was trained for 100 generations
with a population of 100, except for Random, which returned
the initial population. These parameters were chosen to ap-
proximately match those of GerryFair, and to produce the
same number of final models (100). However, since the GP
methods are population-based, they train 100 models per
generation (except Random). GerryFair only trains two mod-
els per iteration (the classifier and the auditor); thus, at a
first approximation we should expect the GP models aside
from Random to require roughly 50 times more computation.

In our experiments, we run 50 repeat trials of each method
on each dataset, in which we split the data 50/50 into train-
ing and test sets. For each trial, we train models by each
method, and then generate predictions on the test set over
each returned model. Each trial is run on a single core in
a heterogeneous cluster environment, consisting mostly of
2.6GHz processors with a maximum of 8 GB of RAM.

There are inherent trade-offs between notions of fairness
and accuracy that make it difficult to pick a definitive metric
by which to compare models [17]. We compute several metrics
of comparison, defined below.

4.1 Auditing Subgroup Fairness

In order to get a richer measure of subgroup fairness for
evaluating classifiers, Kearns et al. [15] developed an auditing
method that we employ here for validating classifiers. The
auditor uses cost-sensitive classification to estimate the group
that most badly violates a fairness measure they propose,
which we refer to as a subgroup FP- or FN- Violation. We

iterate

gradient descent

weight update

evaluationevaluation

start

Figure 2: Diagram of the evaluation of a single
FEAT individual, which produces a logistic regres-
sion model over program outputs 𝜑. The internal
weights 𝜃 are trained via gradient descent each gen-
eration for a set number of iterations.

can define this relative to FP rates as

𝛼𝐹𝑃 (𝑔,𝒫) = 𝑃𝑟𝒫 [𝑔(x
′) = 1, 𝑦 = 0]

𝛽(𝑛, 𝑔) = |𝐹𝑃 (𝑛)− 𝐹𝑃 (𝑛, 𝑔)|
FP-Violation(𝑛, 𝑔,𝒫) = 𝛼𝐹𝑃 (𝑔)𝛽(𝑛, 𝑔,𝒫) (3)

here, 𝒫 is the distribution from which the data 𝒟 is drawn.
In Eqn. 3, 𝛼𝐹𝑃 (𝑔,𝒫) is estimated by the fraction of sam-
ples group 𝑔 covers, so that larger groups are more highly
weighted. 𝛽 measures fairness equivalently to Eqn. 1. This
metric can be defined equivalently for FN subgroup viola-
tions, and we report both measures in our experiments. The
auditing algorithm’s objective is to return an estimate of
the group 𝑔 with the highest FP- or FN-Violation, and this
violation is used as a measure of classifier unfairness.

4.2 Measures of Accuracy

In order to compare the accuracy of the classifiers, we used
two measures. The first is accuracy, defined as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑛) =
1

𝑚

𝑚∑︁
𝑖

1[𝑛(x𝑖) = 𝑦𝑖] (4)
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Table 2: Settings for the methods in the experiments.

Algorithm Settings

GerryFair [14] iterations=100, 𝛾= 100 values ∈
[0.001, . . . , 1], ml = logistic regression

- GerryFairGB “”, ml = gradient boosting

FEAT [21] generations=100, pop size=100, max
depth=6, max dim=20

- Tourn selection: size 2 tournament selection
- LEX [22] selection: 𝜖-lexicase selection
- FLEX (Alg. 1) selection: Fair 𝜖-lexicase selection
- NSGA2 [7] NSGA2 selection and survival
- FLEX-NSGA2 selection: 𝜖-lexicase selection, survival:

NSGA2
- Random return initial random population

The second is average precision score3, which is the mean
precision of the model at different classification thresholds, 𝑡.
APS is defined as

𝐴𝑃𝑆(𝑛) =
∑︁
𝑡

(𝑅𝑡(𝑛)−𝑅𝑡−1(𝑛))𝑃𝑡(𝑛) (5)

where 𝑅(𝑛) = 𝑃𝑟[𝑛 = 1, 𝑦 = 1]/𝑃𝑟[𝑦 = 1] is the recall and
𝑃 (𝑛) = 𝑃𝑟[𝑛 = 1, 𝑦 = 1]/𝑃𝑟[𝑛 = 1] is the precision of 𝑛(x).

4.3 Comparing Accuracy-Fairness
Trade-offs

It is well known that there is a fundamental trade-off between
the different notions of fairness described here and classifier
accuracy [3, 11, 17]. For this reason, recent work has focused
on comparing the Pareto front of solutions between meth-
ods [15]. For GerryFair, this trade-off is controlled via the
parameter 𝛾 described in Table 2. For the GP methods, we
treat the final population as the solution set to be evaluated.

In order to compare sets of solutions between methods,
we compute the hypervolume of the Pareto front [9] between
competing pairs of accuracy objectives (Accuracy, APS) and
fairness objectives (FP Subgroup Violation, FN Subgroup
Violation). This results in four hypervolume measures of
comparison. For two objectives, the hypervolume provides
an estimate of the area of the objective space that is cov-
ered/dominated by a set of solutions. Thus, the hypervolume
allows us to compare how well each method is able to char-
acterize the fairness-accuracy trade-off [4].

5 RESULTS

In Figure 3, we show the distributions of the hypervolume of
the FP violation-APS Pareto front across trials and problems
for each method. Each subplot shows the test results for each
method on a single dataset, with larger values indicating
better performance. In general, we observe that the GP-
based approaches do quite well compared to GerryFair in

3This is a pessimistic version of estimating area under the precision-
recall curve. See https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.average precision score.html.

terms of finding good trade-offs along the Pareto front. Every
GP variant generates a higher median hypervolume measure
than GerryFair and GerryFairGB on every problem.

Among GP variants, we observe that Random, LEX and
FLEX tend to produce the highest hypervolume measures.
Random search works best on the Communities and Student
datasets; LEX performs best on Adult, and there is a virtual
tie between Random, LEX and FLEX on Lawschool. NSGA2,
FLEX-NSGA2 and Tourn all perform similarly and generally
worse than Random, LEX and FLEX.

The hypervolume performance results are further summa-
rized across problems in Figure 4. Here, each subplot shows
the distribution of rankings according to a different hyper-
volume measurement, shown on the y axis. The significance
of pairwise Wilcoxon tests between methods are shown as as-
terisks between bar plots. Since all pairwise comparisons are
cumbersome to show, the complete pairwise Wilcoxon tests
for FP Violation-APS hypervolume are shown in Table 3,
corresponding to the bottom right subplot of Figure 4.

In general, the differences in performance between methods
are significant. We observe that Random search, which has
the best rankings across hypervolume measures, significantly
outperforms all methods but LEX across problems. LEX
and FLEX are significantly different only by one comparison,
and the effect size is noticeably small. In addition, Tourn
and NSGA2 are not significantly different, while NSGA2 and
FLEX-NSGA2 are significantly different for two of the four
measures.

Since the hypervolume measures only give a coarse grained
view of what the Pareto fronts of solutions look like, we plot
the Pareto fronts of specific trials of each method on two
problems in Figures 5 and 6. The first figure shows results
for the Adult problem, and presents a typical solution set for
this problem. It’s noteworthy that, despite having 100 models
produced by each method, only a fraction of these models
produce Pareto-efficient sets on the test data. The small num-
bers of Pareto optimal models under test evaluation suggest
that most classifiers are overfit to the training data to some
degree, in terms of error rate, unfairness, or both. We also
find it interesting that the combined front of solutions to this
problem samples includes models from six different methods.
In this way we see the potential for generating complimentary,
Pareto-optimal models from distinct methods.

By contrast, models for the Student dataset shown in
Figure 6 are dominated by one method: Random search. Ran-
dom produces high hypervolume measures for this problem
compared to other methods, and the Pareto fronts in this
figure shows an example: in this case, Random is able to
find three Pareto-optimal classifiers with very low error (high
APS) and very low unfairness. These three models dominate
all other solutions found by other methods.

Each method is evaluated on a single core, and the wall
clock times of these runs are shown in Figure 7. Random
is the quickest to train, followed by the two GerryFair vari-
ants. Compared to the generational GP methods, GerryFair
exhibits runtimes that are between 2 and 5 times faster. Inter-
estingly, the NSGA2 runs finish most quickly among the GP
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Figure 3: Normalized hypervolume of the Pareto
front for test values of FP violation and average pre-
cision score.

methods. This suggests that NSGA2 may be biased toward
smaller models during optimization.

6 DISCUSSION AND CONCLUSION

The purpose of this work is to propose and evaluate methods
for training fair classifiers using GP. We proposed two main
ideas: first, to incorporate a fairness objective into NSGA2,
and second, to modify lexicase selection to operate over sub-
groups of the protected attributes at each case, rather than
on the raw samples. We evaluated these proposals relative
to baseline GP approaches, including tournament selection,
lexicase selection, and random search, and relative to a game-
theoretic approach from the literature. In general we found
that the GP-based methods perform quite well, in terms of
the hypervolume dominated by the Pareto front of accuracy-
fairness trade-offs they generate. An additional advantage of
this family of methods is that they may generate intelligible
models, due to their symbolic nature. However, the typical
evolutionary strategies used by GP did not perform signif-
icantly better than randomly generated models, except for
one tested problem.

Our first idea, to incorporate a marginal fairness objective
into NSGA2, did not result in model sets that were better
than tournament selection. This suggests that the marginal
fairness objective (Eq. 2) does not, in and of itself, produce
model sets with better subgroup fairness (Eq. 3). An obvious
next step would be to incorporate the auditor (Section 4.1)
into NSGA2 in order to explicitly minimize the subgroup
fitness violation. The downside to this is its computational

0

2

4

6

8

10

12

14

HV
 R

an
k 

(F
N 

Vi
ol

at
io

n,
 1

-A
cc

ur
ac

y)

****
****

****
****

****

ns
ns

ns****
****

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

HV
 R

an
k 

(F
N 

Vi
ol

at
io

n,
 A

PS
)

****
****

****
****

ns

*
ns

*****
**

Ge
rry

Fa
ir

Ge
rry

Fa
irG

B

Ra
nd

om

To
ur

n

LE
X

NS
GA

2

FL
EX

FL
EX

-N
SG

A2

0

2

4

6

8

10

12

14

HV
 R

an
k 

(F
P 

Vi
ol

at
io

n,
 1

-A
cc

ur
ac

y)

****
****

****
****

****

ns
ns

ns****
***

Ge
rry

Fa
ir

Ge
rry

Fa
irG

B

Ra
nd

om

To
ur

n

LE
X

NS
GA

2

FL
EX

FL
EX

-N
SG

A2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

HV
 R

an
k 

(F
P 

Vi
ol

at
io

n,
 A

PS
)

****
****

****
****

ns

ns
ns

******
*

Figure 4: Rankings of methods by four different
hypervolume (HV) measurements, across all prob-
lems. Asterisks denote statistical comparisons, con-
ducted by a corrected pairwise Wilcoxon test. ns:
5𝑒 − 02 < 𝑝 <= 1.0; *: 1𝑒 − 02 < 𝑝 <= 5𝑒 − 02; **:
1𝑒− 03 < 𝑝 <= 1𝑒− 02; ***: 1𝑒− 04 < 𝑝 <= 1𝑒− 03; ****:
𝑝 <= 1𝑒− 04.

Figure 5: An example Pareto front of error (1-
Accuracy) and unfairness (Audit FN Violation)
based on test predictions on the adult dataset. The
test set Pareto fronts for each method are plotted
separately with dotted lines. The combined Pareto
front is circled, and consists of models from six dif-
ferent methods in this case.
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Table 3: Bonferroni-adjusted 𝑝-values using a Wilcoxon signed rank test of (FP-Violation, APS) hypervolume
scores for the methods across all problems. Bold: 𝑝 <0.05.

FLEX FLEX-NSGA2 GerryFair GerryFairGB LEX NSGA2 Random
FLEX-NSGA2 2.6e-16

GerryFair 1.3e-30 7.4e-15
GerryFairGB 4.2e-27 9.1e-10 3.1e-02

LEX 1.5e-01 1.7e-20 7.9e-32 9.5e-27
NSGA2 1.7e-09 5.7e-03 5.6e-21 1.9e-14 2.1e-13
Random 1.7e-02 1.3e-22 5.9e-32 3.5e-27 1.0e+00 3.7e-18

Tourn 3.5e-06 2.3e-03 5.2e-20 7.3e-16 3.7e-11 1.0e+00 2.4e-12

Figure 6: An example Pareto front of error (APS)
and unfairness (Audit FN Violation) based on test
predictions on the student dataset. The test set
Pareto fronts are plotted for each method separately
with dotted lines. The combined Pareto front is cir-
cled, and consists of three models generated by ran-
dom search that dominate all other models.
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Figure 7: Wall clock runtime comparisons for all
methods across all datasets.

complexity, since it would require an additional iteration of
model training per individual per generation.

Our proposal to modify lexicase selection by regrouping
cases in order to promote fairness over subgroups (FLEX)
did not significantly change the performance of lexicase se-
lection. It appeared to improve performance on one dataset

(adult), worsen performance on another (communities), and
overall did not perform significantly differently than LEX.
This comparison is overshadowed by the performance of ran-
dom search over these datasets, which gave comparable, and
occasionally better, performance than LEX and FLEX for a
fraction of the computational cost.

In light of these results, we want to understand why random
search is so effective on these problems. There are several
possible avenues of investigation. For one, the stability of the
unfairness estimate provided by the auditor on training and
test sets should be understood, since the group experiencing
the largest fairness violation may differ between the two. This
difference may make the fairness violation differ dramatically
on test data. Unlike typical uses of Pareto optimization in
GP literature that seek to control some static aspect of the
solution (e.g., its complexity), in application to fairness, the
risk of overfitting exists for both objectives. Therefore the
robustness of Pareto optimal solutions may suffer. In addition,
the study conducted here considered a small number of small
datasets, and it is possible that a larger number of datasets
would reveal new and/or different insights.

The field of fairness in ML is nascent but growing quickly,
and addresses very important societal concerns. Recent re-
sults show that the problems of both learning and auditing
classifiers for rich subgroup fairness are computationally hard
in the worst case. This motivates the analysis of heuris-
tic algorithms such as GP for building fair classifiers. Our
experiments suggest that GP-based methods can perform
competitively with methods designed specifically for handling
fairness. We hope that this motivates further inquiry into in-
corporating fairness constraints into models using randomized
search heuristics such as evolutionary computation.

7 SUPPLEMENTAL MATERIAL

The code to reproduce our experiments is available from
https://github.com/lacava/fair gp.
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